tt+jets

Alexander Khanov
Oklahoma State University
Snowmass Energy Frontier Workshop, BNL 4/4/2013

Motivation

- Better understand the tt production
 - Probe the theory in perturbative mode
 - Compare and tune MC generators
 - Constraint ISR/FSR
- Study the main background to many analyses
- Search for signs of new physics
 - Ex: tq resonances (tW'→ttq, t ϕ →ttq), stop production

What has been measured

- Normalized differential $d\sigma/dN$ cross section
- Fraction of events without additional jets in a certain rapidity interval
- Production cross section $\sigma(tt+jets)$
- tt+heavy flavor production (not covered here)

Measurement details

- Observed jet multiplicity has to be unfolded to the parton level
- Parton jets can be further associated to top quark decay products
- Cross section measurements have to be done in some fiducial volume
- To make the data/MC comparison more meaningful, look at differential cross sections

tt jet multiplicity measurements

- Normalized differential cross section $d\sigma/dN$
 - N: number of particle jets with pT>30 GeV, $|\eta|$ <2.4

$$\frac{d\sigma}{dN} = \frac{1}{\sigma} \frac{N_{\text{data}}^{i} - N_{\text{bkg}}^{i}}{\varepsilon^{i} \, \mathcal{L}} \quad \varepsilon^{i} = \frac{N_{\text{rec}}^{i}}{N_{\text{gen}}^{i}}$$

$$\frac{10^{3}}{2} = \frac{1}{\sigma} \frac{N_{\text{data}}^{i} - N_{\text{bkg}}^{i}}{\varepsilon^{i} \, \mathcal{L}} \quad \varepsilon^{i} = \frac{N_{\text{rec}}^{i}}{N_{\text{gen}}^{i}}$$

$$\frac{10^{3}}{2} = \frac{1}{\sigma} \frac{10^{3}}{2} =$$

CMS PAS TOP-12-018

tt jet multiplicity measurements

- Normalized differential cross section $d\sigma/dN_{add}$
 - N_{add} : number of particle jets with pT>30 GeV, $|\eta|$ < 2.4 with Δ R>0.5 to all top decay products

tt jet multiplicity measurements

 Normalized differential cross section dσ/dN vs parton jet pT cut

Gap fraction measurements

- Gap fraction vs additional jet pT and HT
 - gap fraction = fraction of events that do not contain an additional jet (unfolded to particle level)
 - "additional" = except two highest pT b-jets dilepton channel helps!

Gap fraction measurements

- Gap fraction in various jet rapidity intervals
 - what has been seen is that with veto in the forward region, agreement between data and MC is poor

tt+jets production cross section

- Has been measured for two definitions for tt+jets:
 - Presence of particle jets not matched to top decay products
 - At least 5 particle jets
- Possible approach: instead of counting reconstructed jets and unfolding, construct kinematic likelihood templates for events with and without additional jets

 $\sigma(tt+jets)/\sigma(tt)=0.51$ $\pm 0.01(stat)\pm 0.08(syst)$

Conclusions

- tt+jets production is being measured and results used in other analyses
 - e.g. rapidity gap measurements are used to constraint ISR/FSR parameters and reduce systematic uncertainties due to MC generators
- Want to measure differential cross sections
 - most helpful in constraining MC parameters and clarifying details of tt production
- Meaningful studies should include comparison of various MC generators / generator options